吴金泽


且将痛饮酬风月,莫放离歌入管弦。

Email: hxwjz@mail.ustc.edu.cn;  
Location: 安徽合肥.


教育经历


已发表论文


  1. 董艳民;林佳佳;张征;程程;吴金泽;王士进;黄振亚;刘淇;陈恩红;个性化学情感知的智慧助教算法设计与实践[J];计算机应用,2025
  2. Jiayu Liu, Zhenya Huang, Tong Xiao, Jing Sha, Jinze Wu, Qi Liu, Shijin Wang, Enhong Chen, SocraticLM: Exploring Socratic Personalized Teaching with Large Language Models, NeurIPS 2024, Accept
  3. Zirui Liu, Yan Zhuang, Qi Liu, Jiatong Li, Yuren Zhang, Zhenya Huang, Jinze Wu, Shijin Wang, Computerized Adaptive Testing via Collaborative Ranking, NeurIPS 2024, Accept
  4. Yuze Zhao, Zhenya Huang, Yixiao Ma, Rui Li, Kai Zhang, Hao Jiang, Qi Liu, Jinze Wu, Jing Sha, Shijin Wang, RePair: Automated Program Repair with Process-based Feedback, Findings of the 61th annual meeting of the Association for Computational Linguistics (ACL'2024-Findings):16415-16429, Bangkok, Thailand, August 11-16, 2024.
  5. Haotian Zhang, Shuanghong Shen, Bihan Xu, Zhenya Huang, Jinze Wu, Jing Sha, Shijin Wang, Item-Difficulty-Aware Learning Path Recommendation: From a real walking perspective, KDD2024, Accept.
  6. Tong Xiao, Jiayu Liu, Zhenya Huang, Jinze Wu, Jing Sha, Shijin Wang, Enhong Chen, Learning to Solve Geometry Problems via Simulating Human Dual-Reasoning Process, The International Joint Conference on Artificial Intelligence (IJCAI'2024):6559-6568, Jeju, August 03-09, 2024
  7. Yu Su, Ze Han, Shuanghong Shen, Xuejie Yang, Zhenya Huang, Jinze Wu, Huawei Zhou, Qi Liu, Constructing a Confidence-guided Multiaraph Mode for Cognitive Diagnosis in Personalized Learning,ESWA, Accept.
  8. Bin Hong, Jinze Wu, Jiayu Liu, liang ding, Jing Sha, Kai Zhang, Shijin WANG, Zhenya Huang, End-to-End Graph Flattening Method for Large Language Models,CLNLP 2024, Accept.
  9. 刘子瑞、吴金泽*、姚方舟、刘淇、陈恩红、沙晶、王士进、苏喻, 面向序列诊断的强化计算机自适应测验方法, 模式识别与人工智能, Accept.
  10. Jinze Wu, Haotian Zhang, Zhenya Huang, liang Ding, Qi Liu, Enhong Chen, Jin Sha*, Shijin Wang.Graph-based Student Knowledge Profile for Online Intelligent Education,SDM 2024, Accept.
  11. Yan Zhuang, Qi Liu, GuanHao Zhao, Zhenya Huang, Weizhe Huang, Zachary Pardos, Enhong Chen, Jinze Wu, Xin Li, A Bounded Ability Estimation for Computerized Adaptive Testing, Thirty-seventh Conference on Neural Information Processing Systems (NeurIPS'2023), New Orleans, USA, Dec 10-16 2023. Accepted.
  12. Zirui Liu, Jinze Wu, Fangzhou Yao, Qi Liu*, Enhong Chen, Jin Sha, Shijin Wang, Yu Su.Research on Computerized Adaptive Testing Method Based on Reinforcement Learning in Intelligent Education Scenarios,CCFDATA 2023, Accept.
  13. Guanhao Zhao, Zhenya Huang, Yan Zhuang, Jiayu Liu, Qi Liu, Zhiding Liu and Jinze Wu. Simulating Student Interactions with Two-stage Imitation Learning for Intelligent Educational Systems, CIKM2023, Accept.
  14. Shijin Wang, Jinze Wu*, Haotian Zhang, Jing Sha, Zhenya Huang, Qi Liu. Trustworthy End-to-End Deep Student Knowledge Portrait Modelling Method[J]. Journal of Computer Research and Development. 【优秀论文】
  15. Liu, Q., Wu, J., Huang, Z., Wang, H., Ning, Y., Chen, M., ... & Zhou, B. (2023). Federated User Modeling from Hierarchical Information. ACM Transactions on Information Systems, 41(2), 1-33.
  16. Bi, H., Chen, E., He, W., Wu, H., Zhao, W., Wang, S., & Wu, J. (2023, June). BETA-CD: A Bayesian Meta-Learned Cognitive Diagnosis Framework for Personalized Learning. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 37, No. 4, pp. 5018-5026).
  17. Jun Yu, Yingshuai Zheng, Shulan Ruan, Qi Liu, Zhiyuan Cheng, Jinze Wu, Actor-Multi-Scale Context Bidirectional Higher Order Interactive Relation Network for Spatial-Temporal Action Localization, The 32nd International Joint Conference on Artificial Intelligence (IJCAI'2023, CCF A), 19-25 August 2023, Macao, China
  18. Bihan Xu, Zhenya Huang, Jiayu liu, Shuanghong Shen, Qi Liu, Enhong Chen, Jinze Wu, Shijin Wang, Learning Behavior-oriented Knowledge Tracing, The 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD'2023), 2023.
  19. Chen, M., Wu, J., Yin, Y., Huang, Z., Liu, Q., & Chen, E. (2022, August). Dynamic Clustering Federated Learning for Non-IID Data. In CAAI International Conference on Artificial Intelligence (pp. 119-131). Cham: Springer Nature Switzerland.
  20. Su, Y., Cheng, Z., Wu, J., Dong, Y., Huang, Z., Wu, L., ... & Xie, F. (2022). Graph-based cognitive diagnosis for intelligent tutoring systems. Knowledge-Based Systems, 253, 109547.
  21. Su, Y., Cheng, Z., Luo, P., Wu, J., Zhang, L., Liu, Q., & Wang, S. (2021). Time-and-Concept enhanced deep multidimensional item response theory for interpretable knowledge tracing. Knowledge-Based Systems, 218, 106819.
  22. Wu, J., Huang, Z., Liu, Q., Lian, D., Wang, H., Chen, E., ... & Wang, S. (2021, March). Federated deep knowledge tracing. In Proceedings of the 14th ACM international conference on web search and data mining (pp. 662-670).
  23. Wu, J., Liu, Q., Huang, Z., Ning, Y., Wang, H., Chen, E., ... & Zhou, B. (2021, April). Hierarchical personalized federated learning for user modeling. In Proceedings of the Web Conference 2021 (pp. 957-968).
  24. Zhou, Y., Liu, Q., Wu, J., Wang, F., Huang, Z., Tong, W., ... & Ma, J. (2021, August). Modeling context-aware features for cognitive diagnosis in student learning. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (pp. 2420-2428).
  25. Long, Z., Che, L., Wang, Y., Ye, M., Luo, J., Wu, J., ... & Ma, F. (2020). FedSiam: Towards adaptive federated semi-supervised learning. arXiv preprint arXiv:2012.03292.
  26. Huang, Z., Liu, Q., Gao, W., Wu, J., Yin, Y., Wang, H., & Chen, E. (2020, July). Neural mathematical solver with enhanced formula structure. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 1729-1732).
  27. Wu, P. C., Lin, N., Lei, T., Cheng, Q., Wu, J. Z., & Chen, X. P. (2018). A new grasping mode based on a sucked-type underactuated hand. Chinese Journal of Mechanical Engineering, 31, 1-9.

专著


  1. 《实用编程语言理论基础》
  2. 《人工智能数据处理基础》

主要申请专利


  1. 基于联邦学习的知识追踪的方法及系统
  2. 基于分层个性化联邦学习的用户画像的方法及系统
  3. 一种多维深度学生能力画像方法
  4. 一种基于样本对比的试题知识标签预测方法

比赛


  1. MOOCCUBE学生行为预测比赛二等奖,2020
  2. KDDcup2021 图预测赛道TOP10,2021
  3. 2nd CSEDM 知识追踪任务:包揽了第一阶段和第二阶段的两个冠军;成绩预测任务:一项冠军、一项亚军
  4. NeurIPS2022—CausalML Challenge:总成绩第二; 任务一:使用合成时间序列数据发现知识点先后序关系(第三); 任务二:使用合成时间序列数据推理教学有效性(第三); 任务三:使用真实作答序列数据发现知识点先后序关系 (第二); 任务四:使用真实作答序列数据推理教学措施有效性(第一);
  5. NeuralPS2022 NL4OPT; 任务一:命名实体识别:第四; 任务二:线性规划问题求解方程组生成:第三

奖项


工作经历


项目经历


其他



本站访问量: -